Polecamy

Produkty Tetra do akwarium

Lista artykułów

Nawożenie

Miedź w wodach naturalnych i w akwarium

W srodowisku wodnym metale sladowe wystepuja w postaci zwiazków rozpuszczalnych i nierozpuszczalnych, rozmieszczonych w wodzie, osadach i tkankach organizmów.

Własnosci trujace metali ujawniaja sie, kiedy receptor przez odpowiedni okres czasu pozostaje w kontakcie z przyswajalna forma metali sladowych w steżeniu wystarczajacym do wywołania niekorzystnej reakcji organizmu. Toksyczny potencjał metalu sladowego wzgledem organizmów wodnych zależy od wielu czynników i sa to m.in.:

  • charakterystyka fizykochemiczna wody i osadów
  • skład i stan zdrowia populacji organizmów żywych
  • jak również steżenie i dostepnosc metalu sladowego.


Toksycznosc miedzi w srodowisku wodnym zależy od:

  • zasadowosci i twardosci wody (jest mniej toksyczna w wodach silniej zasadowych i twardych, gdzie tworzy weglanowe kompleksy miedzi)
  • steżenia rozpuszczonego tlenu
  • czynników chelatujacych (m.in. kwasy organiczne)
  • kwasów humusowychpH
  • zawartosci zawiesin stałych


Metale cieżkie w porównaniu do trucizn pochodzenia organicznego nie moga byc degradowane i kumuluja sie w wodzie, podłożu i organizmach żywych
(Miretzky i wsp. 2004). Wiele metali, w tym miedz jest dekomponowanych w osadach dennych (zarówno w naturalnych zbiornikach jak ich modelach – akwariach). Tak zwiazane metale sa nieszkodliwe dla organizmów żywych, jednak zmiany warunków srodowiskowych sa w stanie zaburzyc te równowage i uwalniac metale do słupa wody.

Moga byc wtedy obecne zarówno w wodzie jak i osadach w szerokim spektrum różnorodnych form fizykochemicznych (Fargasova et al., 1999). Czynnikami zewnetrznymi majacymi wpływ na osady denne sa w naturze prady wodne i fluktuacje poziomu wód w zależnosci od klimatu i pogody, a w akwarium – zmetnienia wody powodowane naruszeniem struktury podłoża przy czynnosciach takich jak: regularne podmiany wody, czynnosci zwiazane z okresowymi podmianami wody i odmulaniem dna, ryby przekopujace podłoże w poszukiwaniu pokarmu, slimaki żerujace w podłożu (Melanoidestuberculata) czy filtracja denna.

Steżenie miedzi na poziomie 2-10 ppm (siarczanu miedzi) wykazały efekty mutujace na populacji bakterii Escherichia coli. Nie jest to bez znaczenia w przypadku ekosystemów akwariowych, w których flora bakteryjna odgrywa kluczowa role w utrzymaniu stabilnosci zbiornika (cykl azotowy=amoniak->azotyny->azotany).

Zawartosc metali cieżkich w srodowisku wodnym wzrosła równolegle do gwałtownego procesu industrializacji przez okres ostatnich 150 lat. Wiele metali cieżkich jest mikroelementami w systemach biologicznych, ale sa też bardzo toksyczne dla wodnych form życia już w steżeniach niewiele wyższych od minimalnych, wymaganych do prawidłowego wzrostu roslin.

Np. miedz jest niezbednym mikroelementem, jednak równoczesnie jesli wystepuje w steżeniach wyższych niż klasyfikujace ja jako mikroelement – jednym z najbardziej toksycznych metali cieżkich (Brown i Rattigan, 1979).

Srednie steżenie miedzi w nieskażonych wodach rzecznych wynosi 10μg/l a w zanieczyszczonych może siegac nawet 30-60 10μg/l (Brown i Rattigan, 1979). W zbiornikach rekreacyjnych w celu powstrzymania rozwoju szkodliwych glonów stosuje sie nawet steżenie 1 mg/l i mniejsze. Miedz w połaczeniu z
herbicydami służy także do kontroli rozwoju różnych submersyjnych gatunków roslin naczyniowych (Brown i Rattigan, 1979). Metale cieżkie (zwłaszcza nikiel, kadm, cynk, miedz, chrom), czy herbicydy sa bardziej toksyczne dla roslin wodnych niż zwierzat (Bringman i Kuhn, 1978, Blanck i wsp. 1984, Harrass i wsp. 1985, Hughes i wsp. 1988 i Lewis, 1990). ,

Metale cieżkie w wodzie pochodza głównie z celowego stosowania w niej herbicydów. Identyczny proces zachodzi w akwarium – np. miedz wprowadzamy do zbiornika w wyniku kilku zabiegów: uzupełniania i podmian wody na wode wodociagowa mogaca zawierac okreslone steżenia miedzi, w wyniku stosowania preparatów chemicznych takich jak preparaty antyglonowe lub działajace zabójczo na slimaki zawierajace szkodliwe steżenia miedzi, w wyniku stosowania nieprawidłowego nawożenia roslin w akwarium – np. poprzez stosowanie zle zbilansowanych nawozów np. jak to czesto ma miejsce w praktyce – stosowanie mieszanin nawozowych nie przeznaczonych do uprawy wodnej (nawozy hydroponiczne).

Ponadto składniki nawozów akwarystycznych zawieraja czesto EDTA i dodatkowo sprzyjaja akumulacji metali cieżkich w tkankach roslin – w tym miedzi zawartej w preparatach antyglonowych. Czesto stosowana w USA technika kontrolowania zakwitów sinicowych w zbiornikach wody pitnej polegajaca na dodawaniu do wody siarczanu miedzi jako algicydu pociaga za soba gwałtowne uwolnienie toksyn do wody a przez to jej nieprzydatnosc do konsumpcji i rekreacji. (Wojewódzki Inspektorat Ochrony Srodowiska w Rzeszowie: http://bip.wios.rzeszow.pl)

Pobieranie i akumulacja miedzi w roslinach wodnych

Miedz w organizmach roslinnych jest składnikiem białek i enzymów. Wchodzi w skład m.in. plastocyjaniny oraz oksydazy cytochromowej (0,26%), oksydazy
akorbinianowej i reduktazy azotynowej. Wraz z cynkiem wystepuje w dysmutazie ponadtlenkowej (SOD).W komórce znajduje sie głównie w chloroplastach (Kopcewicz i Lewak, 2002).

W przypadku roslin wodnych miedz, podobnie jak i inne pierwiastki jest pobierana w formie jonowej, zarówno przez korzenie jak i czesci zielone (Biernacki i
Lovett-doust, 1997). Miedz może byc pobierana w kilku formach: Cu2+, Cu+ oraz jako chelaty dostarczane wraz z nawozami lub bedace naturalnymi produktami rosliny.

W roslinie pierwiastek ten jest akumulowany głównie w korzeniach a przy pobieraniu wiazany do sciany komórkowej. W przypadku roslin ladowych transport miedzi do czesci naziemnych ma miejsce w naczyniach ksylemu – u roslin wodnych sa one najczesciej silnie zredukowane. W literaturze brak jest modeli dynamicznych okreslajacych akumulacje metali w ukorzenionych wodnych roslinach naczyniowych (Jackson, 1998).

Bioakumulacja miedzi zależy od gatunku rosliny i liczby oraz fazy ontogenetycznej jej organów. Np w przypadku roslin traktowanych 1mgCu/l przez
10dni rosliny akumulowały od 95 do 15mg/kg suchej masy w zależnosci od gatunku (Qian i wsp., 1999). Za inny przykład moga posłużyc badania nad watrobowcem Scapania undulata, który posiadajac na starcie 2,33mg Cu/kg pobierał miedz z zanieczyszczonego srodowiska o zawartosci miedzi 31 Wg/l. Po 14 dniach steżenie miedzi osiagało w tkankach watrobowca steżenie około 15mg/kg suchej masy (Samecka-Cymerman i Kempers, 1996).

Rosliny zanurzone w wodzie akumuluja 2.3-4 razy wiecej metali niż rosliny pływajace, w szczególnosci gatunki łodygowe jak
Ceratophyllum demersum (Maleva i wsp., 2004), zapewne z racji zredukowanej kutikuli i wiekszej powierzchni kontaktu z woda.

Z czynników abiotycznych na jej akumulacje ma wpływ głównie temperatura, pH, transport czasteczek (prady wody), ilosc rozpuszczonych jonów miedzi w wodzie oraz interakcje pomiedzy poszczególnymi metalami.

Toksyczny efekt różnych substancji na glony i rzesy wodne objawia sie przede wszystkich zahamowaniem ich wzrostu. Jest to ogólnie rozumiany parametr a składaja sie na niego pomniejsze – modyfikowane w pierwszej kolejnosci parametry takie jak wydzielanie tlenu czy zawartosc barwników (chlorofilu, a, b i karotenoidów) (Wang i Freemark, 1995). Niezwiazana miedz jest reaktywna i tworzy wolne rodniki. Jednym z efektów toksycznosci jest stres oksydacyjny wywołany akumulacja reaktywnych form tlenu (ROS) podczas różnych procesów metabolicznych (Foyer, 1997, Geoffroy i wsp. 2004).

Jego niekorzystny wpływ objawia sie w znacznym spadku aktywnosci PSII poprzez zakłócenie transportu elektronów (rozkład wewnetrznej struktury tylakoidu po donorowej stronie PSII). Objawami destrukcyjnego działania miedzi jest spadek wydzielania tlenu fotosyntetycznego (poparte licznymi doswiadczeniami z Elodea canadensis). Dochodzi do tego w wyniku uszkodzenia błon tylakoidowych poprzez peroksydacje lipidów – (pod wpływem jonów miedzi peroksydacji ulegaja też np. lipidy w surowicy człowieka), badz ich hydrolizy i uwalniania kwasów tłuszczowych, a wolne kwasy tłuszczowe hamuja aktywnosc PSII (Kopcewicz i Lewak, 2002).

Jony miedzi reaguja też z grupami SH białek błonowych zmieniajac ich własciwosci.

Wielu badaczy wykazało negatywny wpływ miedzi na ogólna zawartosc chlorofilu w lisciach L. minor (Teisseire i wsp., 1998,99). U L. minor poddanej
działaniu siarczanu miedzi – całkowita zawartosc chlorofilu spadła od 4 do 11% poniżej kontroli. Dla porównania - pod wpływem diuronu zawartosc chlorofilu wzrosła o 25- 39% w porównaniu do kontroli. Diuron jest zbliżony pochodzeniem do munuronu, ma podobny wpływ na asymilacje fosforanów i amoniaku, lecz prawie 20-krotnie słabiej działa na asymilacje wegla (Brown i Lean, 1995). Ta sama roslina traktowana mieszanina siarczanu miedzi i diuronu posiadała wieksza zawartosc chlorofilu w stosunku do kontroli, która to własnosc należy przypisac pestycydowi. Mimo dużej
toksycznosci samej miedzi -w połaczeniu z diuronem nie powodowała żadnych chloroz i ogólna zawartosc chlorofilu była wyższa niż w przypadku kontroli (Teisseire i wsp., 1998). Mimo niekorzystnego działania miedzi poprzez produkcje ROS i degradacje błon i barwników fotosyntetycznych w badanych roslinach nie miało to miejsca. Teisseire i wsp. Wysuneli hipoteze jakoby diuron spełniał role protektora przed stresem oksydacyjnym (ROS) wywołany przez toksyczne jony miedzi. Przypuszczenia oparto na znanym działaniu diuronu objawiajacym sie produkcja nietypowych chloroplastów charakteryzujacych sie szerszymi granami i wyższym poziomem upakowania tylakoidów – co sprawia, że takie chloroplasty sa mniej wydajne w konwersji swiatła w porównaniu do zdrowych chloroplastów (Teisseire i wsp., 1998). Diuron pomimo silnego hamowania wzrostu (>90%) sprawiał, że po 7 dniach ekspozycji na ten czynnik,
zawartosc chlorofilu była wieksza niż w kontroli. Warto miec na uwadze, że nie spotyka sie wsród preparatów akwarystycznych mieszanek miedzi z pestycydami. Jednak badania przeprowadzone 2 lata pózniej dowiodły, że diuron bardzo słabo indukuje enzymatyczne szlaki antyoksydacyjne u L. minor i jego działanie ochronne w przypadku ogólnej zawartosci chlorofilu nie jest zwiazane z obrona antyoksydacyjna enzymów takich jak peroxydaza askorbinianowa, czy reduktaza glutationowa (Teisseire i Vernet, 2000).

Mechanizmy odpornosciowe na miedz

Nie poznano dotad szczegółowo mechanizmów odpornosciowych roslin wodnych na metale cieżkie. Istnieja przypuszczenia, że z racji pochodzenia roslin
wodnych (sa to rosliny ladowe, które wtórnie opanowały srodowisko wodne) posiadaja one identyczne mechanizmy odpornosciowe jak ich ladowi krewni. Pewne jest, że przekształceniom uległ charakter niektórych reakcji, ale ogólny sens procesu pozostał zapewne niezmieniony, szczególne z racji konserwatywnosci wielu enzymów i kodujacych je genów bioracych udział w procesach odpornosci na metale..

Miedz w ilosci szkodliwej jest czynnikiem stresowym prowadzacym do szeregu zmian w funkcjonalnosci metabolicznej i transportowej komórek. Jak w przypadku każdego czynnika stresogennego, tak i w przypadku miedzi dochodzi do wytworzenia mechanizmów adaptacyjnych w zależnosci od czasu trwania i nasilenie tego czynnika.

Opisuje sie dwa rodzaje podstawowych mechanizmów adaptacyjnych. Jeden z nich to unikanie, polegajacy na tworzeniu fizycznych lub chemicznych barier, które zmniejszaja dostep czynnika stresowego do komórek i prawdopodobienstwo wywołania uszkodzen. W przypadku niskiej skutecznosci strategii unikania, rosliny indukuja mechanizmy wewnatrzkomórkowe okreslane mianem strategii tolerancji, których celem jest dezaktywacja metalu wewnatrz protoplastu i naprawa niekorzystnych skutków czynnika stresogennego.

Jednym z procesów zewnatrzkomórkowych jest podobnie jak w przypadku roslin ladowych – modyfikacja ryzosfery. Zjawisko to wystepuje w przypadku roslin ukorzenionych w podłożu. Rosliny na drodze dyfuzji wydzielaja do ryzosfery tlen, który stwarza wokół korzeni strefe utleniajaca (Wójcik, 1995). Dzieki temu np. łatwiej rozpuszczalne metale cieżkie utleniaja sie dajac mniej toksyczne, nierozpuszczalne formy.

W przypadku roslin ladowych znane jest zjawisko akumulacji jonu żelazowego w strefie przykorzeniowej. Zwiazki żelaza takie jak np. wodorotlenki posiadaja
własciwosci kompleksujace m.in. jonów miedzi – nie wiemy czy proces ten ma duże znaczenie w srodowisku wodnym

Możliwosc unikania stresu istnieje również dzieki detoksyfikacji jonów metali w srodowisku na skutek wydzielania przez rosliny zwiazków kompleksujacych metale. Chelatowanie metali w srodowisku zewnetrznym, znacznie redukuje ich toksycznosc i ogranicza pobieranie przez rosliny. Natura chelatorów w wielu przypadkach nie jest dobrze poznana.

Moga to byc polipeptydy, jak u sinicy Anabaena cylindrica, lub silnie kompleksujace metale kwasy hydroksamowe wydzielane przez Anabaena flos-aquae, a
wykryte w próbkach wody morskiej podczas zakwitów tych gatunków (Wójcik i Tukendorf 1995, Hall 2002). Kwasy hydroksamowe, wydzielane przez sinice i pełniace w nich funkcje sideroforów aktywnych w transporcie żelaza, moga wiec dodatkowo detoksyfikowac nadmiar miedzi w srodowisku. Wytwarzanie i wydzielanie na zewnatrz substancji chelatujacych nie odbywa sie stale, lecz tylko w odpowiedzi na obecnosc jonów metali w srodowisku wzrostu.

Zaobserwowano taka zależnosc u okrzemki Nitzchia closterium, która wytwarza eksudat kompleksujacy jedynie w obecnosci jonów miedzi w srodowisku, a jego ilosc rosnie wraz ze wzrostem steżenia (Wójcik i Tukendorf 1995, Hall 2002).

Innym zewnatrzkomórkowym procesem ograniczajacym dostep miedzi do symplastu jest mobilizacja jonów miedzi w scianie komórkowej (może zatrzymywac 80-95% metali pobieranych przez komórke), w której metale sa komponowane w przestrzeniach wodnych miedzy micelami celulozy. Ponadto silne własciwosci wiażace metale sa charakterystyczne dla grup karboksylowych kwasów pektynowych (Wójcik i Tukendorf 1995, Hall 2002).

Kolejnym procesem z pogranicza czynników wewnatrz- i zewnatrzkomórkowych jest wydzielanie jonów miedzi poza obszar komórki, czesciej spotykany u glonów niż u hydrofitów (u nich jony miedzi gromadza sie w obumierajacych czesciach). Makrofity sa w stanie uwalniac miedz do wody – szczególnie jesli umieszczane sa w roztworze czystej wody destylowanej, stad praktyka umieszczania hydrofitów na 24 godziny w naczyniach z woda destylowana przed
założeniem doswiadczen na obecnosc miedzi.

Komórki roslinne wyposażone sa w efektywny system antyoksydacyjny chroniacy przed skutkami nadmiaru reaktywnych form tlenu. Mechanizmy wewnatrzkomórkowe obejmuja szereg enzymów takich jak katalazy, peroxydaze askorbinianowa i reduktaze glutationowa (Geoffroy i wsp. 2002). Ponadto komórki roslinne produkuja metalotioneiny bedace specyficznymi detoksykantami metali cieżkich w komórce.

Zachodzaca w obecnosci metalu indukcja biosyntezy fitochelatyn (bez udziału rybosomów) ma miejsce u wszystkich roslin autotroficznych (Williams i wsp., 2000). Dzieki nim rosliny sa w stanie tworzyc w wakuoli kompleksy z metalami i w ten sposób zwiekszac swoja tolerancje na ich toksyczne dawki. Kwasy organiczne i aminokwasy takie jak kwas cytrynowy, jabłkowy, histydyna moga pełnic role ligandów metali cieżkich i w ten sposób brac udział w procesie detoksykacji. Ponadto według Campbella (1998) miedz czesto wiaże sie z różnymi organicznymi ligandami stajac sie przez to mniej dostepna dla ukorzenionych makrofitów. Hipoteza ta nie została przetestowana eksperymentalnie, chociaż potwierdza ja praktyka akwarystyczna.

Zestawienie cen nawozów potasowych

Zestawienie cen nawozów potasowych

Zestawienie cen nawozów potasowych (K) wybranych producentów...

Związki wapnia (węglan wapnia) i magnezu w wodzie

Sole magnezu w wodach naturalnych pochodzą z gleby z ługowania dolomitów, magnezów, gipsów oraz innych materiałów posiadających w swoim składzie jony wapnia i magnezu. Poza tym sole wapnia i magnezu mogą pochodzić z zanieczyszczeń wody ściekami przemysłowymi.

Zwykle w wodach słabo zmineralizowanych zawartość jonów Ca jest 3-4 razy większa niż zawartość jonów Mg, jednak wraz ze wzrostem mineralizacji następuje większy wzrost ilości jonów magnezu w stosunku do jonów wapnia.

Np. w wodach wodorowęglanowych przy ogólnej mineralizacji do 500mg na dm3 stosunek jonów Ca do jonów Mg wynosi od 4:1 do 2:1.

Przy podwyższonej mineralizacji (do 1000mg/dm3) stosunek Ca/Mg wynosi 2:1 do 1:1 a przy dalszym wzroście mineralizacji jony magnezu przeważają nad jonami wapnia.

Stężenie jonów wapnia zależy silnie od odczynu wody, ponieważ kwaśny węglan wapnia (Ca(HCO3)2) jest dobrze rozpuszczalny, natomiast obojętny (CaCO3) łatwo sedymentuje (Kawiak 2001) – stan ten reguluje stężenie dwutlenku węgla.

W przypadku deficytu CO2 (np. w wyniku zintensyfikowania procesu fotosyntezy) zmienia się równowaga między formami węglanów wapnia – kwaśny dwuwęglan rozkłada się dając obojętny węglan z wydzieleniem dwutlenku węgla według poniższej reakcji (za Kawiakiem 2001):
Ca(HCO3)2 ↔ CaCO3 + H2O + CO2

Powstały węglan obojętny, jak to już było wspomniane wcześniej, jest słabo rozpuszczalny (prawie 1000 razy gorzej) i łatwo sedymentuje w postaci białego osadu.

Powstają wtedy charakterystyczne białe naloty na liściach zanurzonych roślin wodnych – na liściach, ponieważ to właśnie w ich okolicach najszybciej jest pobierany CO2 (efekt bardzo często spotykany w uprawach akwariowych przy intensywnym oświetleniu i niedoborze CO2 podczas jego intensywnego pobierania – wtedy właśnie kwaśne węglany przechodzą w obojętne uwalniając CO2). Główną rolą kompleksów węglanowych jest buforowanie środowiska, w którym dochodzi do zmian odczynu poprzez intensywną asymilację i wydalanie CO2.

CaCO3 może się częściowo rozpuszczać przechodząc w kwaśny węglan wapnia (Ca(HCO3)2).

Oprócz wodorowęglanów wapniowych i magnezowych, Ca i Mg występują w postaci siarczanów wapniowego i magnezowego.

Według Podubsky’ego (1948) o dużej zawartości wapnia w wodzie świadczy rozwój takich gatunków jak Chara ceratophylla, rdestnica kędzierzawa (Potamogeton crispus), rdestnica połyskująca (P. lucens), rdestnica pływająca (P. natans) oraz rdestnica przeszyta (P. perfoliatus).

Do wapniolubnych roślin należą też moczarka kanadyjska.

Tropical Aqua Care z Grupy Zielonej

Tropical Aqua Care z Grupy Zielonej

Tropical Aqua Care to linia specjalistycznych produktów, dzięki którym każdy akwarysta może prawidłowo zadbać o czystość i optymalne parametry środowiska życia ryb, skorupiaków i roślin w akwarium...

Nawożenie w Akwarium Naturalnym

Nawożenie w Akwarium Naturalnym

Rośliny wodne pobierają potrzebne składniki przez powierzchnię liści oraz korzenie. Trzy podstawowe pierwiastki, których rośliny potrzebują w dużych ilościach to azot, fosfor i potas...

Związki fosforu w wodzie (P) - rośliny akwariowe

Związki fosforu w wodzie (P) - rośliny akwariowe

W internecie krążą różne informacje nt. możliwości pochłaniania fosforu przed podłoże, jego korelacji z azotem oraz wpływie na glony. Postanowiliśmy się rozprawić z mitami nt. fosforu bazując wyłącznie na faktach naukowych...

Żelazo w wodzie (Fe)

Żelazo jest mikroelementem, który bardzo często staje się pierwiastkiem deficytowym w zbiorniku wodnym (chlorozy, które wywołuje m.in. są najczęściej pojawiającymi się objawami niedoborów w uprawach akwariowych).

W dobrze natlenionym zbiorniku żelazo występuje w formie utlenionej jako trudno rozpuszczalny, łatwo sedymentujący wodorotlenek żelaza (Fe(OH)3).

Cechą charakterystyczną żelaza jest tworzenie kompleksów m.in. ze związkami humusowymi (Kajak 2001).

W warunkach słabego zaopatrzenia w tlen lub w przypadku jego braku, żelazo przechodzi w zredukowaną, dwuwartościową formę. Jest ona postacią przyswajalną przez rośliny wodne.

Żelazo dwuwartościowe jest lepiej rozpuszczalne od formy trójwartościowej zawartej w wodorotlenku i z łatwością przedostaje się z osadów dennych do słupa wody (gdzie ulegnie ponownemu utlenieniu chyba, ze zostanie uchwycone „w szczęki” substancji chelatujących i w tej postaci będzie nadal dostępny dla roślin).


Zobacz gotowe nawozy z chelatami, które pozwolą Ci uzupełnić niedobór żelaza w wodzie - kliknij tutaj.

Sprwdź czy masz niedobory żelaza i skorzystaj z klucza do oznaczania niedoborów - kliknij tutaj.

Nawozy Aqua Rebell

Nawozy Aqua Rebell

Zapraszamy do zapoznania się z linią niemieckich nawozów Aqua Rebell, które zdobyły uznanie najsławniejszych aquadesignerów zza zachodniej granicy. Od teraz dostępne także w Polsce...

Związki azotu - formy występowania i najważniejsze reakcje

Źródłem azotu w wodzie w naturalnym zbiorniku wodnym jest azot atmosferyczny, który dostaje się do niej na przykład poprzez wiązanie go przez bakterie i niektóre gatunki sinic (Nostoc i Anabaena). Nie wszystkie sinice przyczyniają się do wzbogacania wody w azot, np.sierpie (Aphanizomenon flos aquae) oraz Microcystis aeruginosa – dwa gatunki sinic najliczniej występujące w naszych wodach – nie mają zdolności wiązania azotu atmosferycznego.

W wodzie azot występuje w formie rozpuszczalnej, w postaci jonów: azotanowego (NO3), azotynowego (NO2) i amonowego (NH4), a także w postaci cząsteczek N2 i związków organicznych (rozpuszczonych lub w zawiesinie, pochodzących z rozkładu np. białek roślinnych).

Forma azotynowa (NO2) w otoczeniu tlenowym jest nietrwała i ulega utlenieniu do azotanów natomiast w środowisku beztlenowym ulega redukcji do postaci amonowej. Obecność tych procesów tłumaczy znikome stężenia azotynów w wodach powierzchniowych i w akwarium.

Azot podobnie jak fosfor jest w większości magazynowany w osadach dennych (według Kajaka około 90% zasobów). Stąd tak duże stężenia nawozów w podłozach typu ADA Aqua Soil Amazonia.

Powietrze rozpuszczone w wodzie jest również ważnym źródłem azotu – jego cząsteczkową formę (N2) wykorzystują sinice oraz bakterie przyczyniając się do zwiększenia jego puli w zbiorniku wodnym.

W zależności od warunków tlenowych dochodzi do jednego z dwóch fundamentalnych procesów związanych z przemianami azotu w wodzie – przy obecności tlenu zachodzi nitryfikacja, natomiast w przypadku jego braku – denitryfikacja.

Nitryfikacja polega na utlenieniu amoniaku do azotynów a następnie azotanów, które są łatwo przyswajalną dla roślin formą azotu. Proces nitryfikacji przeprowadzają kolejno bakterie z grupy Nitrosomonas i Nitrobacter.

Procesem odwrotnym do nitryfikacji jest denitryfikacja, podczas której azotany przechodzą w amoniak (NH3), który ulega przekształceniom w wolny azot cząsteczkowy (N2). Denitryfikacji sprzyjają beztlenowe warunki panujące w podłożu a bakteriami przeprowadzającymi ten proces są autotrofy chemosyntetyzujące, np. Micrococcus denitrificans.

Mechanizmy umożliwiające przedostanie się azotu do słupa wody są analogiczne do mechaniki transportu fosforu.

Azotany z podłoża przedostają się do słupa wody w wyniku działania kilku różnych mechanizmów, które zależą od warunków chemicznych i ekologicznych (np. ilości bentosu).

Są to przede wszystkim procesy falowania i resuspensji osadów. Warto zauważyć, że intensyfikacja mechanizmów dostarczania azotu z podłoża do toni wodnej rośnie odwrotnie proporcjonalnie do stężenia azotanów w wodzie. Może się i tak zdarzyć, że zmącone cząsteczki osadu pochłoną zawarty w toni wodnej azot przyczyniając się w ten sposób to regulacji jego stężenia w wodzie (Kajak 2001). Ilość uwolnionego azotu zależy silnie od powierzchni podlegającej falowaniu, czyli powierzchni tzw. „aktywnego dna”.

Procesy uwalniania azotu z osadów dennych są niezbędnym czynnikiem w mineralnym żywieniu roślin łodygowych, gatunków pływających w toni lub na powierzchni wody, czyli tych, które nie posiadają odpowiednio przystosowanego systemu korzeniowego do pobierania substancji z podłoża. Dodatkowo w przypadku gatunków błotnych rosnących w zanurzeniu (z dobrze rozwiniętym systemem korzeniowym) transport azotu do toni wodnej intensyfikuje procesy asymilacji tego pierwiastka (w grę wchodzi wtedy również pobieranie przez organy zielone).

W gęsto zarośniętych akwariach, gdzie proces falowania ma mniejsze znaczenie - azotany ulegają bardzo powolnemu przedostawaniu się do słupa wody co sprzyja stosowaniu bardzo żyznych podłoży w przypadku akwariów ukierunkowaych na ekspozycję roślin.


Uwaga od autora artykułu:
Im mniej ingerencji w podłoże tym bardziej stabilne będzię Twoje akwarium.
Pamiętaj, że żyznych substratów nie należy odmulać!

Jak nawożą profesjonaliści?

Jak nawożą profesjonaliści?

Zastanawialiście się czasem czym nawożą swoje rośliny aquadesignerzy zdobywający wysokie miejsca w konkursach akwarystycznych?

Baza wiedzy akwarystycznej


 
 Działamy od 2001 roku i wspólnie z ponad
30 tysiącami akwarystów z całej Polski zdobywamy wiedzę i dzielimy się doświadczeniem oraz informujemy o nowościach z branży akwarystycznej.

 
Zapraszamy na Forum Dyskusyjne

Sklep akwarystyczny

Bogata oferta ponad 300 gatunków i odmian roślin.
Ponad 15 000 produktów dostępnych wysyłkowo lub do odbioru osobistego w Krakowie.
Punkt odbiorów: Kraków ul. Młyńska Boczna 5

Czytaj więcej o odbiorze osobistym

 
Copyright © 2001-2024 roslinyakwariowe.pl ®
Wszelkie prawa zastrzeżone. Kopiowanie, rozpowszechnianie całości lub fragmentów strony zabronione.
           


 
Facebook Login